JACS

OURNAL OF THE AMERICAN CHEMICAL SOCIETY

Subscriber access provided by American Chemical Society

Communication

Regio- and Diastereoselective Rhodium-Catalyzed Allylic
Substitution with Acyclic O-Alkoxy-Substituted Copper(l) Enolates:
Stereodivergent Approach to 2,3,6-Trisubstituted Dihydropyrans
P. Andrew Evans, and Michael J. Lawler

J. Am. Chem. Soc., 2004, 126 (28), 8642-8643+ DOI: 10.1021/ja049080n « Publication Date (Web): 25 June 2004
Downloaded from http://pubs.acs.org on March 31, 2009

o i. LIHMDS, Cul O Ry O Ry
M .
OR; Ry ii. cat. RhCl(PPhj3); R1C_) RO
P(OMe);, 0 °C
R; =Me, Bn etc. 77-97% { ds =9:1t053:1
R, = alkyl, aryl etc. 2°%1°=43:11t02=99:1

More About This Article

Additional resources and features associated with this article are available within the HTML version:

Supporting Information

Links to the 2 articles that cite this article, as of the time of this article download
Access to high resolution figures

Links to articles and content related to this article

Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

ACS Publications

High quality. High impact. Journal of the American Chemical Society is published by the American Chemical
Society. 1155 Sixteenth Street N.W., Washington, DC 20036


http://pubs.acs.org/doi/full/10.1021/ja049080n

JIAIC

S

COMMUNICATIONS

Published on Web 06/25/2004

Regio- and Diastereoselective Rhodium-C

atalyzed Allylic Substitution with

Acyclic a-Alkoxy-Substituted Copper(l) Enolates: Stereodivergent Approach

to 2,3,6-Trisubstituted

P. Andrew Evans* and

Dihydropyrans

Michael J. Lawler

Department of Chemistry, Indiana Umrsity, Bloomington, Indiana 47405

Received February 18, 2004; E-mail: paevans@indiana.edu

The regio- and diastereoselective transition metal-catalyzed allylic
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H
alkylation with o-substituted ketone enolates represents both a Favored  § Hos gy | gy H SRhL, Disfavored
challenging and important synthetic transformafioh Although TS E 1 By TS
significant advances have been accomplished with enolates derived Ph O—Cu

from a-heteroatom-substituted carboxylic acid derivatives, the
reactions are generally limited to electronically biased or sym-
metrical metat-allyl fragments to reduce or circumvent regio-
chemical infidelity*> Hence, the ability to facilitate the regio- and
diastereoselective allylic alkylation of unsymmetrical allylic alcohol
derivatives with aracyclica-heteroatom-substituted ketone enolate
would constitute a significant advance for this type 6f-sgp° cross-

X =OR,

Figure 1. Proposed transition structures for the observed diastereoselectivity
with a-alkoxy-substituted copper enolates.

Table 1. Effect of the a-Alkoxy Substituent on the Regio- and
Diastereoselective Rhodium-Catalyzed Allylic Alkylation Reaction
Using Copper(l) Enolates (eq 1; 1, R' = Ph, rac-2a; R, =
Ph(CHy),)?

coupling reaction. entry a-alkoxy ketone 1, R; = 20:1°be ds 3/4° yield (%)
We envisioned that the copper(l) enolate derived from an 1 H >19:1 2:1 92
o-alkoxy-substituted ketone would provide a general approachto 2 Me =219:1 17:1 85
acyclicdiastereocontrol, due to its propensity to form Faehelated 2 C"'ZPT]%':EHZ iigi g?i ;8
enolate (Figure 1). Furthermore, the stereoelectronic nature of the o BUMe,Si ~191 31 75

alkoxy substituent could be tailored to accomplish optimal selectiv-
ity. Herein, we now describe the regio- and diastereoselective
rhodium-catalyzed allylic alkylation of enantiomerically enriched
unsymmetrical secondary allylic alcohol derivativeswith the
copper(l) enolate of aacyclic a-alkoxy ketonel, to furnish the
secondary allylic alkylation adducB#4 in excellent yield, favoring

a All reactions were carried out on a 0.25 mmol reaction scale using 10
mol % RhCI(PPR); modifiedwith 40 mol % P(OMey, and 1.5 equiv of
the lithium enolate transmetalated with an equivalent amount of Cul.
b Regio- and diastereoselectivity was determined by 400 MHz NMR and/
or capillary GLC on the crude reaction mixturéShe primary products
were prepared using copper(l) cyanfdé.lsolated yields.

6
3(eq 1y Table 2. Scope of the Regio- and Diastereoselective
(o) cat. ML O Ry O Ry Rhodium-Catalyzed Allylic Alkylation Reaction with a a-Alkoxy
. n . L— —_ a
Vs 1 Copper(l) Enolate (eq 1; 1, R' = Ph, Ry = PhCHy)
R QCO:Me R'/U\i/'\/ R')W . entry allylic carbonate R, = 2:1°0¢ ds 3/4° yield (%)?
ORy g A7 2 R;0 R0 2 — .
1 3 4 1 Ph(CH)2 a >99:1 37:1 90
o ) _ o Me b =991 24:1 97
Preliminary studies tested our hypothesis through examination 3 npr c >99:1 37:1 92
of the effect of thea-alkoxy substituent on the regio- and 4 'Pr d 911 10:1 93
diastereoselectivity (Table 1). This study demonstrated that, al- 2 'Bu e 431 151 94
_ 4 . ) 6 (CHg),CH(CHy)2  f >99:1 53:1 9
though these reactions are highly regioselective, the nature of the CH=CH(CH)5 g ~99-1 36.1 04
alkoxy substituent has a dramatic effect on the level of stereocontrol. g Bn h >99'1 91 77
Interestingly, the unsubstituted hydroxyl and the bultert- 9 BnOCH [ >99:1 44:1 77
butyldimethylsilyl ether furnished poor diastereoselectivity (entries ﬂ TBSP?]CH Jk Zggii iiii 8‘1‘
. . P >99: :
1 and 5), while the alkyl-substituted derivatives afforded very good 12 naphthyl | ~991 121 92

to excellent stereocontrol (entries-2).” The observed diastereo-
selectivity is consistent with the open transition structure outlined
in Figure 1, involving a distortedz-allyl or enyF (o + x)
organorhodium intermediate with a chelatéa@opper(l) enolate.

In the favored transition structure, the substituery) (R flanked

by the proton and planar phenyl group of the enolate. Alternatively,

a All reactions were carried out on a 0.25 mmol reaction scaRegio-
and diastereoselectivities were determined by capillary GLC or HPLC
analysis on the crude reaction mixturé3he primary products were
prepared using copper(l) cyaniélith the exception of entries 11 and 12
which were prepared via cross-metathesisolated yields.

the disfavored transition structure has the copper(l) enolate eclipsed Table 2 summarizes the application of the copper(l) enolate
by this substituent, as a consequence of the bidentate binding andderived froma-benzyloxy acetophenone (Table 1, entry 4) to a
the relative orientation of the ether substituent. The relative size of variety of racemic secondary allylic carbonates (vide infra). The
the ether substituent (Bn Me > H) in conjunction with bidentate regioselectivity in the allylic alkylation is tolerant of a wide array
coordination appears to be crucial for good stereocontrol, since theof allylic alcohol derivatives, whereas the diastereoselectivity is
proton in the hydroxyl group clearly diminishes the ability to significantly affected by the relative size of the allylic substituent.
distinguish between the transition structures, while the lower basicity For example, linear and branched alkyl substituents afford excellent
of trialkylsilyl ethers presumably reduces chelatfon. diastereocontrol (Table 2, entries-3, 6—7, and 9-10), provided
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branching is beyond thg-position. Nonetheless, the- and
pB-branched alkyl (entries 4 and 5) and benzyl (entry 8) and aryl
substituents (entries 11 and 12) afford synthetically useful levels
of stereocontrol. Additional studies examined the enantiospecificity
of this transformatiod? Treatment of the allylic carbonat&)¢2b

(R; = Me, 97% e with the trimethyl phosphitemodified
Wilkinson’s catalyst and the copper(l) enolate, derived from
transmetalatiolt of the lithium enolate ofl (R' = Ph, R = Bn)

with copper(l) iodide at 0°C, furnished the enantiomerically
enriched alkylation productanti-3b/syn4b in 94% yield &99%
ceq, with excellent regio- and diastereoselectivig:(° > 99:1,

ds = 24:1), favoringanti-3b. Hence, the excellent regio- and
diastereoselectity coupled with the enantiospecificity makes this
an important new method for the construction of acyclic adjacent
ternary stereogenic center§he versatility and synthetic utility of
this potentially important transformation was further demonstrated
by the allylic alkylation using the aryl ketorn® followed by a
Baeyer-Villiger oxidation to afford the corresponding estéin
89% yield with excellent regio- and diastereoselectivity (eéf2y.

1. LIHMDS, THF, Cul

o cat. RhCI(PPh3)3,2b o me
P(OMe);, 0 °C ANHTs
AHH _PoMe, 0%¢ | A=) Q
2. cat. SnCly, 6 no NHTs
) (TMSO)Z, K2C03, 0°C 7 6
Ar = p-MeOCgH,- 89% ds =19:1
2°/1°299:1

The stereocontrolled construction of trisubstituted cyclic ethers
remains an important area of investigation, primarily due to the
ubiquity of this structural motif in biologically important natural
and unnatural producté.We envisioned that the combination of
the regio- and diastereoselective rhodium-catalyzed allylic alkylation
reaction with ring-closing metathesis would provide a stereodiver-
gent approach to 2,3,6-trisubstituted dihydropyrans. Interestingly,
treatment of the allylic carbonat&)(2b (R, = Me, 97%e¢), under
the analogous reaction conditions with the copper(l) enolate derived
from the ketonesR)- and §-8,'° furnished the correspondirg3-
disubstituted ketones, which upon ring-closing metathesis furnished
the cyclic ether®aand9bin 73 and 77% overall yield, respectively
(2°:1° = 19:1,ds= 10:1)16 The relative configurations ¢fa and
9b were confirmed with the aid of an NOE experiment and X-ray
crystallography, respectively.

Scheme 1

1. LIHMDS, Cul, THF;
cat. RhCI(PPhy);

i 0% o L)
P(OMe);, (S)-2b,0°C Ph .- -

s

Ph : ds =10:1
(Sl 0T [29:1°>19:1
\ﬂ/\ | 2. Grubbs' Catalyst \” l >
o (R)-8 OR (0] 9a OR
CH,Cly, A
73%
Ji As Above Me. AN ds =10:1
Ph 77% Ph 20:1°>19:1
Yo 0 o°
(o] ()-8 OR O 9p OR

R= p-MeOC6H4CH2

In conclusion, we have developed a regio- and diastereoselective

rhodium-catalyzed allylic alkylation reaction utilizing copper(l)

enolates derived froracyclicalkyl-protectedx-alkoxy ketones. This
study suggests that the ability to form a chelated enolate intermedi-
ate is crucial for obtaining high diastereoselectivity, whereas
excellent regioselectivity is obtained regardless of this substituent.
Finally, the synthetic utility of this method was highlighted through
the conversion of the aryl ketone to the ester and the development
of a stereodivergent approach to 2,3,6-trisubstituted dihydropyrans
(Scheme 1).
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